Loading...












<=
?
=>


Some Approaches
Towards Grasping Intelligence



     Helge Ritter

   Institute for Cognition and Robotics (CoR-Lab) &
   Excellence Cluster Cognitive Interaction Technology (CITEC)
   Bielefeld University


/home/helge/talks/mainz07/newimages/img-188.jpg

DRIVSCO Workshop Juodkrante 2009 #2    Helge Ritter 

The Way of Divine Inspiration


/home/helge/archive/images/general/michelangelo.jpg



DRIVSCO Workshop Juodkrante 2009 #3    Helge Ritter 

Cognitive Interaction Technology

Intelligent Motion:
How to move around,

  manipulate objects, use tools?

/home/helge/archive/images/Hand+Kind.jpg
Attentiveness:
What mechanisms enable

to share attention with humans, and

to ignore irrelevant detail?

/home/helge/archive/images/barthoc_cropped.jpg
Situated Communication:
How can we coordinate

  language,perception and action 

to facilitate cooperation with humans?

/home/helge/archive/images/MAX-Funken-klein.jpg
Memory and Learning:
How can a system

acquire, store and retrieve knowledge

and improve its capabilities by learning?

/home/helge/archive/images/reuters-small.jpg


DRIVSCO Workshop Juodkrante 2009 #4    Helge Ritter 

Interdisciplinarity

Cognitive Interaction at the crossroads of several disciplines:
Biology
coordination of walking motion, neural control strategies, "intelligent" reflexes already in insects, ...
/home/helge/talks/mainz07/newimages/img-065.jpg
Sports science
experimental-analytical methods for elucidating mental representation structures; training methods for optimizing action sequences
/home/helge/talks/mainz07/newimages/img-047.jpg
Linguistics
Joint-Action perspective on language, speech generation, language as part of interaction and cooperation,
/home/helge/talks/mainz07/newimages/img-164.jpg
Psychology
memory systems, attention control, cognitive decision models
spacer

DRIVSCO Workshop Juodkrante 2009 #5    Helge Ritter 

Organization of Action Memory

Sport science:

Organization of Memory for Actions

Thomas Schack + COALA Group
/home/helge/archive/images/ec07//img-086.jpg
/home/helge/archive/images/ec07//img-087.jpg




  • Language and actions
  • Analysis of similarity judgements
  • Optimization of training procedures
spacer


DRIVSCO Workshop Juodkrante 2009 #6    Helge Ritter 

Large-Scale System Prototypes: ASIMO Robots





Bielefeld-based CoR-Lab

(Cognition & Robotics Lab)

 closely cooperating
with CITEC Cluster
/home/helge/talks/mainz07/newimages/AsimoTablet.png



  • platform enabling higher autonomous functions
  • verification of theoretical ideas
  • significant "critical mass" of functionalities
    /home/helge/talks/mpg//AsimoBi.png
  • realistic interaction with humans important aspect
  • common daily tasks define non-trivial benchmarks
spacer


DRIVSCO Workshop Juodkrante 2009 #7    Helge Ritter 

Five Reasons to study manual intelligence

/home/helge/archive/images/homunculus.png
spacer
  • hands are our most important tools
  • hand control is likely to have shaped large portions of our brain
  • hands challenge us beyond perception: they are for interaction!
  • reasonable robot hands and sensors are becoming available
  • manual intelligence is naturally grounded in physical interaction

DRIVSCO Workshop Juodkrante 2009 #8    Helge Ritter 

The Richness of Manual Intelligence

/home/helge/archive/images/grasping/ManualActions.png

DRIVSCO Workshop Juodkrante 2009 #9    Helge Ritter 

A Short History of Manipulation

/home/helge/archive/images/grasping/ShortHistoryOfGrasping2.png

DRIVSCO Workshop Juodkrante 2009 #10    Helge Ritter 

Some Robot Hands

/home/helge/archive/images/grasping/RobotHands.png

DRIVSCO Workshop Juodkrante 2009 #11    Helge Ritter 

The human yardstick

/home/helge/archive/videos/penspinfini.png

DRIVSCO Workshop Juodkrante 2009 #12    Helge Ritter 

Understanding Physical Contact

Physical contact key mediator of most interactions!

Cognitive agents need to understand many aspects of contact:
/home/helge/archive/images/grasping/HandReachingForDoorKnob.jpg
  • anticipate contact
  • prepare contact
  • initiate contact
  • shape contact pattern for
    • stability
    • controllability
    • identification
  • maintain contact pattern
  • release contact pattern
DRIVSCO Workshop Juodkrante 2009 #13    Helge Ritter 

The Structure of Contact Patterns

/home/helge/archive/images/grasping/JointTypesG90.png
  • contact geometry:
    • degrees of freedom
    • shape
    • dynamical state:
      
             static, slipping, rolling
    • mutability:
      
             fixed, rigid, soft, ...
      
  • force/pressure pattern
  • friction properties
  • texture
  • causality
DRIVSCO Workshop Juodkrante 2009 #14    Helge Ritter 

Bielefeld Grasping Lab

/home/helge/archive/images/pa10.jpg

7 DOF PA-10

 robot arm




spacer
/home/helge/archive/images/kinematics_real.jpg

dextrous

robot hand

20 DOFs




spacer
/home/helge/archive/images/muscles-small2.jpg

pneumatic

muscles

pressure
pulse-driven

inherent

compliance




spacer
/home/helge/archive/images/m6setup.jpg

Grasping Lab: hand-arm setup



/home/helge/talks/mpg//balloon2.png

DRIVSCO Workshop Juodkrante 2009 #15    Helge Ritter 

The Complexity of Manual Interaction

/home/helge/archive/images/general/ManualInteractionComplexity.png

DRIVSCO Workshop Juodkrante 2009 #16    Helge Ritter 

Physics-based simulation

/home/helge/talks/mpg//graspsim.png
/home/helge/archive/images/grasping/CrumplingPaper.jpg
/home/helge/archive/images/grasping/ForkInNoodles.jpg
  • delivers significant portion of "contact cognition"
  • several parts missing:
    • parse visual image into physics simulation (but some examples for line drawings)
    • simulation delivers "low-level reasoning" only
    • in many ways too detailed and brittle ("spaghetti")
  • no directedness, no planning, no choices, ...
spacer

DRIVSCO Workshop Juodkrante 2009 #17    Helge Ritter 

Haptic Shape Recognition

/home/helge/archive/images/grasping/sensor_mit_halb-small.jpg
/home/helge/archive/images/grasping/sensor_ruhe_output1.jpg
/home/helge/archive/images/grasping/sensor_flasche_output.jpg
/home/helge/archive/images/grasping/sensor_glas_output.jpg
/home/helge/archive/images/grasping/sensor_quader_output.jpg
/home/helge/archive/images/grasping/sensorpca.png
/home/helge/archive/images/grasping/sensor_mit_halb-small.jpg
/home/helge/archive/images/grasping/sensor_mit_glas2.jpg
/home/helge/archive/images/grasping/sensor2.jpg




spacer
  • Somatosensory area: similarities to visual cortex
  • simplest approach: apply pattern recognition methods to sensor images
  • needs to be complemented by active exploratoin and spatio-temporal integration
spacer

DRIVSCO Workshop Juodkrante 2009 #18    Helge Ritter 

Initiating contact patterns:

  • timing of
    
     finger contacts
    
    /home/helge/archive/images/grasping/lukograsping2.jpg
  • predicting
    
     grasp stability
    
    /home/helge/archive/images/StabilityPolytope.png
  • ANN-based
    
     finger-controllers
    
    /home/helge/archive/images/grasping/valve-pressure.jpg
  • grasp choice
    
    
    /home/helge/archive/images/grasping/GraspSom4x5.png
    /home/helge/archive/images/StabilityPolytope.png
  • optimization of
    
     grasp geometry
    
    /home/helge/talks/mpg//graspsim.png

DRIVSCO Workshop Juodkrante 2009 #19    Helge Ritter 

Shaping Contact Patterns for Stability

/home/helge/archive/videos/graspSim_somgrasp.png
  • what finger positions achieve "force closure"?
  • what finger positions maximize resistance to external forces and torques?
spacer
  • find contact positions with
    
       overlapping friction cones!
  • maximize "stability polytope" in wrench space!

DRIVSCO Workshop Juodkrante 2009 #20    Helge Ritter 

The "Clockwork fallacy"

  • Analysis of grasping intelligence reveals involvement of many details
  • we (as engineers/scientists) are biased to compose a complex process from elements that are well-communicable
  • this seems to invite the construction of solutions in terms of "programmed clockworks" (classical programming as the prime example)
spacer
Example: A grasping "clockwork"
  • acquire precise situation data:
    • geometric shape of object
    • friction properties
  • dito for manipulator
  • synthesise optimal target grasp
  • plan trajectory from current state
  • augment with feedback action from sensor events
spacer
  • But: such approach in danger of being too sensitive to details and
  • we may overlook solutions in terms of holistic dynamics that operate
    
       more robustly (but may be harder to conceptualize and decompose)
    

DRIVSCO Workshop Juodkrante 2009 #21    Helge Ritter 

Cage based strategy

  • topological perspective: "shrinking a cage"
  • robust dynamics, can produce stable final positions
  • selection of different grasps via initial condition: choice of pregrasp
  • pregrasp optimization for improved robustness and stability
/home/helge/archive/images/grasping/sharpener_default.jpg spacer /home/helge/archive/images/grasping/sharpener_newpregrasp.jpg spacer /home/helge/archive/images/grasping/sharpener_newthumb.jpg spacer

DRIVSCO Workshop Juodkrante 2009 #22    Helge Ritter 

Pre-Grasps as Basis Elements

/home/helge/archive/images/grasping/Grip2FP.jpg spacer /home/helge/archive/images/grasping/Grip2F_P.jpg spacer /home/helge/archive/images/grasping/Grip3FS.jpg spacer /home/helge/archive/images/grasping/GripAFP_P.jpg spacer /home/helge/archive/images/grasping/GripPow.jpg spacer
    
/home/helge/archive/images/grasping/Grip2FP_real.jpg spacer /home/helge/archive/images/grasping/Grip2F_P_real.jpg spacer /home/helge/archive/images/grasping/Grip3FS_real.jpg spacer /home/helge/archive/images/grasping/GripAFP_P_real.jpg spacer /home/helge/archive/images/grasping/GripPow_real.jpg spacer

DRIVSCO Workshop Juodkrante 2009 #23    Helge Ritter 

Some "Live" Examples

/home/helge/talks/mpg/grasp_demo.png

DRIVSCO Workshop Juodkrante 2009 #24    Helge Ritter 

Benchmark Results

Benchmark for Grasping: 21 common objects, 4 grasp types:
/home/helge/archive/images/grasping/GraspsAndObjects90.jpg
  • "force grasp" (Force)
  • "precision grasp" (Pre)
spacer
  • "3-finger grasp" (III)
  • "2-finger grasp" (II)
spacer




10 trials per object &

grasp (840 trials total)


ObjSuccGrasp
110Force (+III)
210(special)
310(+III,-Force)
410Force
510Force (+III)
610Force (+III)
79Force (-III)
88III (+Force,-Pre,-II)
98Force
109Force
117Pre
126III
137Force
147III (+Force,-Pre,-II)
156Force (-III)
165III
174Pre
183Pre
194Pre
200III
210Pre

DRIVSCO Workshop Juodkrante 2009 #25    Helge Ritter 

What can we learn for achieving sensori-motor intelligence?


Key requirements seem to be:
  • condensation of vague input information into very definite decisions and behavioral responses
  • dimension reduction: mapping high-dimensional sensor input into relatively low-dimensional motor signals
  • crucial role of careful binding to prepare and facilitate control
  • whenever possible: just shape natural dynamics instead of assembling everything from scratch
  • learning to "robustify" and extend existing skills


DRIVSCO Workshop Juodkrante 2009 #26    Helge Ritter 

Grasping needs Knowledge

/home/helge/archive/images/grasping/schinkenbroetchen.jpg
/home/helge/archive/images/grasping/schere.png
/home/helge/archive/images/grasping/sektglas.jpg
/home/helge/archive/images/grasping/pusteblume.jpg
/home/helge/archive/images/grasping/softeis.jpg
/home/helge/archive/images/grasping/tealight.jpg

Many influence factors depend on prior knowledge


  • firmness
  • friction properties
  • weight
spacer
  • function
  • purpose
  • dangers

DRIVSCO Workshop Juodkrante 2009 #27    Helge Ritter 

Learning from Human Grasps

/home/helge/archive/videos/cgdemo.png
/home/helge/archive/images/grasping/somvisual560.jpg
  • capture human grasps
  • how do human grasps differ?
  • generate "grasp maps"
  • use "grasp maps" to guide
    
       interaction
    
spacer

DRIVSCO Workshop Juodkrante 2009 #28    Helge Ritter 

Extracting human grasping knowledge from data

/home/helge/archive/images/grasping/DataGloveFlasche.png
/home/helge/archive/images/grasping/ShadowHandFlasche.png
/home/helge/archive/images/grasping/DataProjection.png

DRIVSCO Workshop Juodkrante 2009 #29    Helge Ritter 

UKR Manifold Construction

/home/helge/archive/images/grasping/UkrGraspManifoldScheme.png
                       P(x,y) =
 
i
K(y−yi)K(x−xi)     ⇒     y(x) =
  i   yi K(x−xi)
  i   K(x−xi)
 

DRIVSCO Workshop Juodkrante 2009 #30    Helge Ritter 

Navigation within learned "Screw-Manifold"

/home/helge/archive/videos/TurnCap.png

DRIVSCO Workshop Juodkrante 2009 #31    Helge Ritter 

Using contact patterns for identification


 Idea: create "haptic image database" for studying
 object identification based on (robot) touch sensation









  • robot moves touch sensor around object
    /home/helge/talks/honda-symp07/pics/TastRoboter-klein.jpg
  • simple (passive) exploration algorithm
    /home/helge/talks/honda-symp07/pics/fig_tilt.jpg
  • acquisition of 16x16x100 haptic space-time-pattern
  • database for 16 household or toy objects
    /home/helge/talks/honda-symp07/pics/fig_database.jpg
  • neural network classifier
  • up to 96% recognition rate
spacer

DRIVSCO Workshop Juodkrante 2009 #32    Helge Ritter 

Which Features carry relevant information?

/home/helge/archive/images/general/Tree.png
Feature NoFeature Description
0-5Center of gravity (FS,Q,C)
6-11Distance CG - center of sensor (FS,Q,C)
12Value maximum texel (FS)
13Position maximum texel (FS)
14distance maximum texel from center of sensor (FS)
15Value minimum texel (FS)
16Position minimum texel (FS)
17Distance minimum texel from center of sensor (FS)
18-23mean texel (FS,Q,C)
24Value median texel (FS)
25-30Std deviation (FS, Q, C)
31-36Third moment/skewness (FS,Q,C)
37-43Distance max/min texel from center (FS,Q,C)
44Number of texels > mean + 0.5 std dev (FS)
45Power spectrum (FS)
46-513x3 window around max texel (FS,Q,C)
spacer
  • C 4.5 Decision Tree
  • feature selection according
    
       to max Shannon Entropy
    
    H = − i N pi log(pi)
  • user specified parameter: nr N of feature clusters to use

DRIVSCO Workshop Juodkrante 2009 #33    Helge Ritter 

Results

/home/helge/archive/images/grasping/NodeEntropyG90.png
/home/helge/archive/images/grasping/HapticIdentificationG90.png

DRIVSCO Workshop Juodkrante 2009 #34    Helge Ritter 

Information Contents vs. Cluster Granularity

/home/helge/archive/videos/wentropy.png

DRIVSCO Workshop Juodkrante 2009 #35    Helge Ritter 

Towards Integration of Capabilities

/home/helge/archive/videos/curiousRobot.png

DRIVSCO Workshop Juodkrante 2009 #36    Helge Ritter 

Some Challenges Ahead

/home/helge/archive/videos/wkuka-knet-matsch.png
Dealing with deformable objects I:

 Shaping clay from haptic feedback




spacer
Dealing with deformable objects II:

Manipulating paper
/home/helge/archive/videos/paper-manip.png
  • Creating a "Grasp Vocabulary"
spacer
  • Interaction models from data

DRIVSCO Workshop Juodkrante 2009 #37    Helge Ritter 

Grasping and Language


Sprache handelt vom Erfassen von Begriffen
und Bedeutung

Our hands embody a large 

Vocabulary of capabilities:

     greifen zeigen ziehen schieben drücken schieben reiben 
     klatschen nehmen geben setzen stellen legen drehen fühlen 
     tasten blätter formen wägen halten giessen öffnen schliessen 
     falten wischen knüllen biegen knöpfen kratzen klappen 
     zwicken spalten häufeln füllen leeren wickeln mischen
     fangen schreiben malen stützen beten deuten rollen zählen 
     kneten flechten fädeln knoten werfen stechen schlagen 
     hämmern brechen knicken streichen packen balancieren 
     stecken schleudern klopfen zupfen schmiegen rühren
     fassen binden hängen heben schütteln schälen schnipsen  
     ...

DRIVSCO Workshop Juodkrante 2009 #38    Helge Ritter 

Principle vs. Complexity: or
How is our essential knowledge organized?

/home/helge/archive/images/verbrennungsmotor-schema.png
spacer
  • combustion engine: basis principle is simple!
  • BUT: becomes only viable through numerous auxiliary details
    /home/helge/archive/images/motor_audi_tdi.jpg
  • efficiency and robustness of a commercially successful engine are highly distributed over very many components
  • Large parts of our essential know-how may be of this nature!
  • encouraging fit with the neural style of information representation!


DRIVSCO Workshop Juodkrante 2009 #39    Helge Ritter 

Some Key Questions for MI

  • What are good benchmarks for MI?
  • understanding types of degradations to MI
  • How can we represent interaction?
  • bridging vision and touch
  • a (high-level) language for expressing manual skills
  • how to enable structured exploration / manual skill learning?
  • tool understanding and tool use
  • what to enables "universal physical interaction"?
DRIVSCO Workshop Juodkrante 2009 #40    Helge Ritter 

Thank you
for your attention!

/home/helge/talks/mpg//Handshake440x330.png
spacer
Coworkers:
Robert Haschke

 Benjamin Inden

 Hendrik Kösling

 Jonathan Maycock

 Michael Pardowitz

 Alexandra Barchunova

 Matthias Behnisch

 Daniel Dornbusch

 Andrea Finke


Christoph Elbrechter

 Risto Koiva

 Alexander Lenhard

 Frank Röthling

 Florian Schmidt

 Matthias Schöpfer

 Carsten Schürmann

 Jan Steffen 

 Katharina Tluk von

 Toschanowitz